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Abstract. A uleory of two mmplementjng luminescence lines observed in some AiiBvi 
Semiconductors doped with transition metal impurities is pmposed. The first line is known 
to be attributable to an inbacenm transition; the second line appears as a result of a second- 
order process of interference between radiative and non-radiative innsitions wilh participation 
of the d shells of the impurity atoms. A detailed calculation of the iomsily of such a process 
is presented. It is shown hat the specific resonance can make this second-order pmcess quite 
sbmg if impurity-phonon coupling is m n g  enough. The pssibility of observing pain 
of complementing lines in various AllBn and AmBv systems is discussed. Some unresolved 
problems associated with the effect are also touched upon 

1. Introduction 

Several years ago Broser and collaborators published a striking experimental observation in 
the luminescence spectnun of AnByl semiconductors doped with transition metal impurities 
(for ZnSCu see Broser et a1 1988; for ZnS:Ni and CdSCu see Hoffmann er ul 1988). The 
effect observed in these papers was called the ‘sum rule’, since the energies hul and hy of 
two zero-phonon lines in the luminescence specmm summed to the forbidden energy gap, 
i.e 

hvi+ h y  = Eg. (1) 

One of these lines, hul , belongs to the so-called infrared band. For ZnSCu it corresponds 
to the emission of a photon with an energy hut = 0.858 eV, and is due to the intracentre 
transitions between two states of the Cu impurity appearing when the 2D state of the d 
shell is split by the cubic crystal field (point group Td). The split states in terms of the 
many-electron configuration are ’T2(Ce4), the ground state, and *E($e’), the first excited 
state (see, for example, Ballhausen 1962) with an energy difference 

AE = 100, = E@(ee3)) - E(’T(6e4)) = h u ~ .  

This splitting is caused mainly by the crystal field of the host atoms surrounding the d 
impurity. There is also a covalent renormalization of AE due to a hybridization of the d 
functions with the band Blwh states (Kikoin and Fleurov 1979). It is quite clear that this 
splitting is mainly an internal impurity property, and is not connwted with the width of the 
forbidden energy gap. 
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This is the reason why the existence of a second h e  complementing the hut line to 
the forbidden energy gap (1) is so surprising. The second line in the case of ZnS:Cu 
is found in the blue part of the spectrum, and is due to the emission of photons with 
an energy hv2 = 2.965eV. This zero phonon line together with its phonon satellites is 
observed at low temperatures (around 4-6 K) and disappears above 30 K. There are reasons 
to believe that this line is really connected to the transition metal impurity, rather than 
to an unidentified defect. This point of view is also supported by the fact that pairs of 
complementing lines are observed in several systems. We would expect that the observation 
of this line reflects intrinsic properties of the transition metal impurities in semiconductors 
and try to explain the 'sum rule' using this line of argument. The problem is that, if 
our knowledge of the electronic structure of this system is correct, there are no dipole 
(first-order) transitions producing the necessary photon. That is why an attempt was made 
(Dahan and Fleurov 1992) to find a second-order process allowing for the complementary 
line. That paper showed that an interference between radiative and non-radiative transitions, 
and a peculiar resonance which may take place in such systems, considerably enhance the 
intensity of the complementing line. Therefore the generally very weak second-order process 
is nevertheless observed. 

The aim of the present paper is to present a detailed description of the mechanism only 
briefly outlined in Dahan and Fleurov (1992), and to perform the calculations allowing one 
to estimate the intensity of the complementing line. The mechanism producing this line is 
described in section 2. The calculations are carried out in section 3, where the important 
role of Jahn-Teller distortions is emphasized Section 4 presents a discussion of the results. 

2. The origin of the wmplementing line 

The process to be considered is the recombination of an electrowhole pair via a transition 
metal impurity. This pair is created by external irradiation. Both the electron and the hole 
thermalize rapidly, and the energy of the pair nearly equals the forbidden energy gap E,. 
Most probably, this pair is bound to the impurity and produces as a result a narrow zero- 
phonon line. We are looking for a second-order process in which a photon is emitted with 
energy h y  = Eg - 1ODq. The initial state of the system contains the energy of the valence 
band with a hole, E,(N - I ) ,  and the conduction band energy with one electron, Ec(I); N 
is the total number of electrons in the bands. It is clear that &(I) + E,(N - 1) = Eg + Eb, 
where Eb = E,(O) + E , ( N )  is the energy of the band electrons in the ground state. The 
transition metal impurity is in its ground state, which in the case of ZnS:Cu is the state 
'T&e4) with nine electrons in the d shell, i.e the initial-state energy is 

(3) Ein = E h  t Eg + E('T2) + Eph,in 

where Ept,.in is the energy of the phonon system. 
In order to obtain the hy line the final state must be a state in which there is no 

electron-hole pair in the bands and with the transition metal impurity in the excited state 
2E(t$e3), i.e. its energy is 

There are two possible channels leading from state (3) to state (4), as expressed by the 
following reactions: 

Channel (a) ('T&e4); e, h) ==+ (At(ge4); h) ==+ ('E(ge3)) 
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In channel (a) the electron from the conduction band is at the first stage, captured by the Cu 
atom converting the nine-electron atomic state z~2($e4)  into the ten-electron atomic state 
Al(ce4): the valence hole for the moment remains free. The intermediate state is 

Eint,a Eb + E g  - Eo + E ( A I )  + Eph.a. (6) 

At the second stage the free hole is captured by the Cu atom and its ten-electron state 
becomes again a nine-electron state. The capture of the hole means the removal of an 
electron from the filled shell Al(ce4). If the electron is removed in the t2 state we anive 
at the desired final state, with the energy as given in (4). 

Channel @) gives us another possibility of arriving at the same final state. First, the 
free hole is captured creating two possible intermediate states 3Tl(e4<, e3t3 and 'Tz(e3e) 
with energies 

Eint,bl = E b  

Eint,bz = E b  f E g  - E h  f q3T2)  -k Eph.bZ. 

Eg - Eh f E(3T1) 4- Eph,bl 

(7) 

After that, the electron remaining in the conduction band is captured to produce the desired 
final configuration of the d shell. 

Channels (a) and (b) both provide the possibility of a transition with the desired energy 
change. What remains is to verify that the rate of the above two-stage process is large 
enough to account for the experimental data, 

We have two types of interaction at our disposal which may cause transitions between 
the various electronic states. The radiative transitions are due to the interaction 

of the electrons with an electromagnetic field A. The term 9 is the momentum operator of 
the ith electron. There are also non-radiative transitions due to the non-adiabaticity operator 

where Rj is the coordinate of the j th  atom and M is its mass. The functions Qfl are the 
electronic parts of the wavefunctions of the states described above. The free differential 
operator a/aRj in equation (9) is supposed to act on the phonon part of the wavefunctions. 

These two types of interaction, L and R, produce three possible second-order processes. 
(i) The second-order dipole process (Ez) produces two photons, hv; and hu;, whose 

sum energy is 

hvz = hv; + hv;. 

It is clear that a broad spectrum rather than a sharp line appears, and therefore this process 
is not of interest to us. 

(ii) Second-order non-adiabatic processes (I?) do not produce any photons and do not 
contribute to the luminescence spectrum. 

(iii) Only the interference 'radiative-non-radiative' transitions (LR) produce the 
necessav photon h y .  The intensity of this line will be calculated in the next section. 
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I In 

Configuration Coordinale 
Figure 1. A scheme for the configurational coordinates for h e  seconddrder lransition: Q is the 
local phonon coordinate. A is the Jahn-Twer displacemenr 

3. Transition rate of the complementing line 

The complementing line hvz appears due to the above second-order process, whose rate can 
be calculated under the following assumptions. No phonons are excited in the initial state, 
since the temperature is low and we believe that the phonon relaxation is more rapid than 
the recombination of the electron-hole pairs. The final state is also not excited vibronically, 
since the calculation is done for the zero phonon line. As for the intermediate states, 
there are no restrictions concerning their possible vibronic excitations (figure 1) and the 
corresponding summation is to be carried out. We are also interested in a single photon 
process, which in second order only appears due to an interference between the radiative 
and non-radiative transitions. The corresponding rate is 

Here we use the standard adiabatic representation for the wavefunction Cg as a product 
of an electronic wavefunction, 8. and a nuclear wavefunction, ,y, that is @((TI, {RI) = 
*({TI; (R)),y({R]). The term AE, = - is the change in the electronic energy 
of the whole system due to the transition from the initial to an intermediate state. The 
term AE,h = Epi,,in - Eph;it is the Corresponding change in the phonon energy. The 
summation over the intermediate states in (10) includes a summation over all possible 
phonon configurations of each intermediate electronic state. It is clear that one can always 
find a phonon configuration that makes the real part of one of the denominators in (IO) equal 
to zero. These configurations produce the most important contributions to the probability 
per unit time Wg', and therefore its calculation demands a proper account be taken of the 
broadening r p h  of the vibronically excited intermediate states. 
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Figure 2. The conhibution ofchannel (a) to the transition rate of the zero phonon line in the blue 
band as compared to the radiative transition rate plotfed against the dimensionless displacement. 
A, for ZnSCu. 

The transition rate (IO) now becomes 

denote that the corresponding operator acts either on the vibronic or on the electronic part 
of the wavefunction, respectively. 

The energy differences between the initial and the intermediate electronic states in the 
denominators (IO) in the case of ZnS:Cu are 

(13) = AE'LO) - hv = E - E(Io)fl2) - hv 
g 

for channel (a), and 
BE@) = A E ~ ~ )  = E ( ~ T ~ )  

for channel (b), where E(d9) - E(d8) = E(2T2) and E('"J(2Tz) = E(dl") - E(d9) is the 
ionization energy of the tenth tz electron of the Cut atom d shell. The photon energy hu 
either appears or does not appear in the denominator in (1 1) depending on the order of the 
action of the interaction operators R and t. and in principle both channels must be taken 
into account. However, only those two channels which give the largest contribution are 
kept in the transition rate (1 1). 
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3.1, Vibrational wavefunctions 

In order to calculate of the probability per unit time W;' we have to formulate a model 
approach to be used for the vibronic wavefunctions. It is convenient to treat this process 
using the configuration coordinates (see figure 1). For the sake of simplicity, we assume 
that the vibronic frequencies do not change in the different electronic states: 

P Dahan and V Fleurov 

Here r denotes the irreducible representation of the point group to which the corresponding 
vibrations belong. 

In the case of a tightly bound impurity atom we would expect the important interactions 
to be those with nearest neighbours. For Td symmetry there are four nearest neighbours 
that give rise to the following vibrational modes: 

rv = A ,  + E  + 2Tz. (16) 

The charge transfers from dg to d" or to d8 electronic configurations give rise to intermediate 
states with highly excited vibrational degrees of freedom. This happens due to a strong 
change of the Jahn-Teller displacement (figure 1). Therefore, the principal part of the 
vibrational energy is concentrated in the corresponding Jahn-Teller vibrational mode, which 
means that this mode plays the role of the accepting mode in the transition process. 

The harmonic approximation for the vibrational wavefunctions are 

where E,, is the electronic energy. The eigenfunction of the harmonic oscillator is 

where H,,(() is the nth Hermite polynomial, and 

For both channels the process ends in a state having electronic E symmetry. This means 
that its Jahn-Teller mode also has E symmetry. Therefore, a multiphonon transition from 
the intermediate to the final state is allowed only if a mode with r = E in the intermediate 
state is excited. The first overlap integral in (12) is then 

The operators E"' and 13") are parts of the kinetic energy operator, which is why they 
must have the same symmetry. An analysis of the electronic matrix element (see section 3.3) 
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shows that LE makes a finite contribution. Therefore calculating the second overlap integral 
in (12) 

we also keep only the vibrational mode with T2 symmetry. Here 

A = (Qimry - Qr,b 

is the dimensionless displacement between different electronic states for the accepting E 
mode above. Contributions from all the other modes are represented by the product over 
r" and p". Assuming that the electronic transition causes only the vibronic excitation of 
the accepting mode one gets (see, for example, Englman 1979) 

where a appears because of the differentiation in the first term in (20) and (FiI,jn)2 is the 
Franck-Condon factor. Inserting the vibrational and electronic terms into the pmbability 
per unit time one arrives at the equation 

where L ~ ~ n f P ~ ! 8  are defined by (46) and (48); a and ,9 denote either the initial or final 
state depending on the channel. The term 

contains differing parameters for different channels. The superscripts (IO) and (8) are 
suppressed in order to avoid an overly complicated notation. 

3.2. Transition rate dependence on A2/2 

The Stirling approximation is now used in (24) and the summation over n is substituted by 
an integration over the variable x = hwn: 
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In order to calculate the integral in (25) the new variable x = yz is introduced. The 
subintegral function becomes even, and one may extend the limits of integration to 
(-ca. ca). Closing the contour and calculating the pole contribution one arrives at 
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Using this result the probability per unit time (23) can be represented as 

&(Eg - AE - hv).  x-exp hw [ -T ; (6;;) ;2)2] ~ E ( J )  

In order to get the transition rate of the process, (27) is integrated over all possible 
photon states: 

R"' = WF'(hu)p(hu)G(E, - AE - hv)  d(hu). (28) s 
Performing the integration in (28) and using the relation 

Pm = -2zimvmxm (29) 

connecting the matrix elements of the momentum and coordinate operators one arrives at 
the radiation intensity 

where 

1 1 
h h ut0 = - (E*  - E"O'(?*)) us = -E'9' (E). 

The intensity (30) is to be compared with that of the first-order process 

producing the red Line V I .  Assuming that the coordinate mahix elements are more or less 
the same, one estimates the ratio of the intensities to be 

where 
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The A(j)  are dimensionless parameters representing the electronic part of the matrix 
elements. A detailed discussion of how these parameters are calculated for the multielectron 
d shells of the transition metal impurities is presented in the next section. The most important 
fact for us here is that each parameter A'j )  is of the order of unity, which allows us to 
estimate the ratio (32) of the intensities. 

The contribution y"O) to the ratio (32) due to channel (a) is shown in figure 2 as 
a function of the dimensionless Jahn-Teller displacement A. This function has a well 
pronounced maximum in the range 4 < A < 6. Another contribution is due to channel (b), 
which has a similar behaviour; y"O) in figure 2 is calculated assuming w = 338.6~111-I, 
which corresponds to the longitudinal optical (LO) mode (Germer 1983). The proper 
frequency to be used here is that of the localized phonon, which is expected to be below 
the LO made. This, however, will not change the essentials of the result. Therefore we may 
conclude that the resonance described above compensates for the smallness of the squared 
Franck-Condon factor and makes the transition rate , I ( z ) ,  comparable to the ordinary 
radiative transition rate, PI) .  

3.3. The elecfronicpart of the transition rate 

In this section we calculate the dimensionless parameter A'j )  (32). defined as 

(33) 

where 

is the matrix elements of the dipole transition appearing in (31). 
We start by calculating the matrix elements of the operators LCce) and 'k acting on 

the electronic wavefunctions. The latter are chosen according to the model described in 
Kikoin and Fleurov (1979). where the single-electron wavefunctions are represented as 
superpositions of the atomic d functions, e r M ,  and the Bloch functions, +b. The localized 
electrons are described by the function 

while the band-electron functions 

are distorted due to the presence of the impurity. Here 
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where 
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and 

E, = ErS t M ( E i ) .  

Multielectron wavefunctions for various configurations d" are constructed in accordance 
with the standard Racah algebra and using the conventional scheme of the strong crystal 
field (Satoru et al 1970): 

Here GFC, are seniority numbers and CF,z,y, are Clebsch-Gordan coefficients. The nth 
electron energy is defined as 

Eiy Er. - Ern-3 

w*here Ern is the multielectron energy for the ion d" in the cubic crystal field, and y = e 
or t2. The spin variables are suppressed, since no interaction involving spins is considered 
in this paper. 

The electronic wavefunction of the system in the initial state is 

where M = t ,  q. t ,  2 is the antisymmetrization operator. For channel (a), the electronic 
wavefunction of the system in the intermediate state is 

where y = U, U and M, p = [, q ,  c. The wavefunction of the final state of the system is 

%M = %w(d9). (40) 

Using the above wavefunctions one can calculate the matrix elements of the operators R 
and C: 

where Ikc) is the Bloch wavefunction of a conduction band electron. The non-adiabaticity 
operator is represented using the normal coordinates ery. Substituting the relevant part of 
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(36) into (41) the non-adiabaticity matrix the distorted Bloch-electron wavefunction 
element becomes 

The term gEfM is the hybridization matrix element of the impurity potential, which can be 
expanded in powers of the atomic displacement &. 

The Jahn-Teller part of the Hamiltonian of the system in the linear approximation is 

where 

Using (43) in the calculation of the matrix element (42). one gets 

The hole is usually captured from the top of the valence band (k = 0) which transforms 
according to the irreducible representation (or T2). The electron wavefunction in the final 
state transforms according to the irreducible representation r12 (or E). Therefore, the matrix 
element of the Jahn-Teller potential VrFMt (43) is non-zero only if it transforms according 
to one of the irreducible representations appearing in the direct product (r15 x r12) = 
r15 + rz TZ + TI. Since the atomic displacement QT, does not exist among the 
vibrational modes of the tetrahedral lattice (which will be discussed later), the only term 
which is kept in the sum over r' in (44) is the term with r' = Tz. 

Therefore, (44) becomes 

So (41) is now 

For the case of channel (b) the intermediate electronic wavefunctions are 

%,M = AQT,M(d*)$f' \ yb tz~  = A*T,M(d*)$f'. 
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Calculating the matrix elements of the radiative and non-radiative transition the initial- and 
the final-state wavefunctions of the impurity are chosen to be of the form 

wT2M(d9) = alw3~,(e'@@e + a 2 @ 3 ~ ~ ( e ~ $ ) w e  

' b ( d 9 )  = 

P Dahan and V Fleurov 

+ bz@3~,(e~$)% + bs*3~,(e~$)'&, 

where ai and b; are the appropriate ClebschGordan coefficients. 
Thus the non-zen, matrix elements for channel (b) are 

A"' - 3 - ( Tz(e3{)t~IXlTz(d8), W k c .  ' T z ~ e 3 ~ ~ l ~ " ' 1 3 T z ~ ~ 3 ~ ~ ,  %, kh, kc) 

+ ( 'T I (~ '&~Z~XIT~  (d*), kc)(kc, 3T~(e3~) l~ ' c )13T , (e3~) ,  We, kh, kc). (47) 

The electronic coefficient A:,:] contains two terms: 

where 

Using the results obtained in this section, the coefficient A'j) (33) in equation (32) 
is estimated. Its most important part, connected with the covalent renormalization of the 
Jahn-Teller coupling, is written as 

Here 

A E  = E ,  - Ee 

and 

g:(tz) = W v ( r ) l e )  

is the hybridization parameter whose k dependence is neglected; a is of the order of the 
zero-point vibration of the mode responsible for the Jahn-Teller distorrion. 
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Using the above expressions the dimensionless parameter A ( j )  becomes 

The mass operator M ( E )  is estimated, assuming again a constant hybridization parameter: 

The summation over le is now transformed to an integration, and the semi-elliptical 
model density of states 

S ( E )  = '[* R D  - (32]112 
is used (where 2 0  is the bandwidth). Then 

Now we have the details to estimate the dimensionless parameter A ' j )  (32) using 
(49) with the above electronics details and with specific values connected to our example 
(ZnSCu). Substituting in (49) 01 = .,.A%&% - l / u ,  taking into account that V - 1 eV-2eV 
for ZnSCu and D - 1.5 eV, and that the ClebschGordan coefficient C'~)(CG) is estimated 
to be of the order of one, A(j' becomes - 1. 

There are reasons to believe that this estimate will also hold also for various other systems. 
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4. Discussion 

This paper presents a detailed theoretical consideration of the 'sum rule' observed in the 
luminescence spectra of several semiconductors doped by transition metal impurities. In 
essence, the theory uses the multielectron structure of the d shells of the impurities. Only 
a peculiar interplay of the transitions between various multielectron states has allowed us 
to find the processes responsible for the lines whose energies complement each other to the 
forbidden energy gap of the host semiconductor. 

Another important point is the necessity of a rather strong impurity-phonon coupling 
and, hence, a rather strong Jahn-Teller effect. It is only under this condition that we are 
able to understand why the second-order process producing the complementing line is not 
negligibly weak. Here an important part is played by the hybridization between the d state 
and band states which leads to the 'swallowing' of the localized state. Then the d-electron 
wavefunctions have enhanced radii and can efficiently interact with the lattice. 

The most important precondition for the appearance of the complementing luminescence 
line as described above is as follows: the multielectron structure of the atomic shell must 
participate in the creation of the deep levels. Such a structure is typical of transition metal 
impurities. Therefore we may expect that every transition metal impurity should produce two 
luminescence lines, one corresponding to the intrashell transition (with energy 10Dq) and the 
other complementing the first one to the energy gap. Moreover, there is no specific intrashell 
transition which is better than the others. One may expect that any line corresponding to a 
transition between two states of the d shell would have also a complementing line. 

In order to check this assumption we have made a search of the experimental literature 
and found several examples of such pairs of lines (see table 1). 
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Table 1. Complementing lines for different htraeenue m i t i o n s .  

System of transition hvl (eV) hvz (ev) Ref. hvt + h y  (ev) Energy gap (eV) 

ZnSe:Cr J T ~ - %  0.68 2.05 a 2.73 2.82 
ZnSe:Co *A2-'T2 0.409 2.4328 b 2.841 2.82 
ZnSNil+ 2T2-ZE 0.438 C 

3.3891 d 3.828 3.85 
ZnSNi2+ zTz-zE 1.5124 23332 e 3.845 3.85 
ZnS:Fe2* "TI-% 1.25 f 

2 6  I g 3.86 3.85 

2.19 i 267 258 

1.35 k 1.87 1.84 

0.49 m,n 1.46 1.52 

0.68 P. 9 1.52 1.52 

1.5 P 2 3  235 

CdS:NiZt 'TI -'T2 0.487 h 

CdSe:Ni2+ 'TI --3T2 0.52 j 

GaAs:C& 4 T ~  (F)-*Az(F) 0.97 I 

G~AS:C?+ 'A~-'E 0.84 0 

GaF?Ni'+ 3T~-3Tz 0.8 I 

a: Grebe er a1 1976: b Robbins er a1 1980: c: Roussos er a1 1983: d: Sokolov er a1 1982: e: H o f f m  er 01 
1988; f: Skwwwonski el a1 1981: g: Zmmerman and B o p  1983; h. Pappalardo and Deitz 1961: i: Kazmki and 
Ryzkin 1971; j: Baranovski and Langer 1971; k Buhmann er of 1981; I: Baranowski er a1 1967; m: Komilov 
er a1 1974; n: Ennen er a1 1980; 0: Eaves et a1 1981; p: Ulrici and Klewen 1985: q: KOschel et a1 1976; r: 
Jezewski er ul 1987: s: Abagyan et a1 1976. 

This is an extended version of the table published in Dahan and Fleurov (1992). It 
contains data for several systems (first column) for various intracentre transitions (second 
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column). The notation standard for the crystal field theory Ballhausen (1962) is used to 
denote the states of the d shell. The authors of the papers referred to in the table either 
attributed the lines (presented here as complementing lines) to charge transfer processes or 
did not comment upon them at all. There are also examples where the intracentre transitions 
are observed in one paper while the complementing lines are found in another paper. 

We believe that it would be very interesting to make a better experimental check of the 
pairs of lines presented above, as well as to look for other possible pairs in various systems. 
In addition to the entries in the table in Dahan and FIeurov (1992), this table contains three 
examples of the complementing pairs in AmBv host semiconductors. It is quite clear from 
the considerations presented above that there should be no principal difference hetween the 
AnBvj and AlnBv systems, except perhaps for the numerical values of the parameters in 
the theory. We understand that all these pairs of complementing lines cannot be considered 
as a real proof of the universality of the sum rule. These can be treated only as indirect 
evidence in favour of such universality. Direct evidence (for or against) can be produced 
only by specially designed experiments. 

Although situation as it is described here is encouraging, there are still some important 
problems to be solved. One of them is briefly touched upon here. The important feature of 
the model presented in this paper is that the final state of the complementing second-order 
process is electronically excited. This fact does not present any problems as long as we 
consider the luminescence. It means, however, that one would not expect an observation 
of the complementing line in the absorption spectra. In this case the electronically excited 
state must serve as the initial state of the process and its extremely low occupation at 
low temperatures would make the intensity of the complementing line extremely weak. 
Nevertheless, the experiment says that this line is observed. 

This fact is a challenge to the theory and must be properly addressed. We believe 
that the strong phonon-impurity interaction (the strong Jahn-Teller effect) may lead to self- 
localization of the impurity in the excited state. The relaxation of this state will then be 
coupled to a slow motion of the impurity atom and wiU be characterized by a very long 
lifetime, which can help resolve the inconsistency in the theory mentioned above. This 
approach resembles in some respects metastable states for double centres, discussed by 
Kagan and Kikoin (1980) and Kikoin et a1 (1986) in order to explain anomalous properties 
(for example, the large relaxation time for doped narrow-gap semiconductors). A detailed 
discussion of this problem, and of the experimental facts which can support such a model 
in our case, will be published elsewhere. 
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